Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 596
Filter
1.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38466127

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease Virus/metabolism , Peptide Hydrolases/metabolism , Serogroup , Foot-and-Mouth Disease/drug therapy , Foot-and-Mouth Disease/prevention & control , Endopeptidases/metabolism , 3C Viral Proteases , Antiviral Agents/pharmacology
2.
Int J Biol Macromol ; 265(Pt 2): 131066, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521339

ABSTRACT

Human rhinovirus 3C protease (HRV 3CP) has a high specificity against the substrate of LEVLFQ↓G at P1' site, which plays an important role in biotechnology and academia as a fusion tag removal tool. However, a non-ignorable limitation is that an extra residue of Gly would remain at the N terminus of the recombinant target protein after cleavage with HRV 3CP, thus potentially causing protein mis-functionality or immunogenicity. Here, we developed a combinatorial strategy by integrating structure-guided library design and high-throughput screening of eYESS approach for HRV 3CP engineering to expand its P1' specificity. Finally, a C3 variant was obtained, exhibiting a broad substrate P1' specificity to recognize 20 different amino acids with the highest activity against LEVLFQ↓M (kcat/KM = 3.72 ± 0.04 mM-1∙s-1). Further biochemical and NGS-mediated substrate profiling analysis showed that C3 variant still kept its substrate stringency at P1 site and good residue tolerance at P2' site, but with an expanded P1' specificity. Structural simulation of C3 indicated a reconstructed S1' binding pocket as well as new interactions with the substrates. Overall, our studies here prompt not only the practical applications and understanding of substrate recognition mechanisms of HRV 3CP, also provide new tools for other enzyme engineering.


Subject(s)
Endopeptidases , Peptide Hydrolases , Humans , Peptide Hydrolases/metabolism , Heart Rate , Endopeptidases/metabolism , Amino Acids , 3C Viral Proteases/metabolism , Recombinant Proteins/chemistry , Substrate Specificity
3.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38323828

ABSTRACT

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Endopeptidases/metabolism , Internal Ribosome Entry Sites , 3C Viral Proteases , Ubiquitins/genetics , Ubiquitins/metabolism
4.
Appl Microbiol Biotechnol ; 108(1): 81, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38194136

ABSTRACT

We engineered Saccharomyces cerevisiae to express structural proteins of foot-and-mouth disease virus (FMDV) and produce virus-like particles (VLPs). The gene, which encodes four structural capsid proteins (VP0 (VP4 and VP2), VP3, and VP1), followed by a translational "ribosomal skipping" sequence consisting of 2A and protease 3C, was codon-optimized and chemically synthesized. The cloned gene was used to transform S. cerevisiae 2805 strain. Western blot analysis revealed that the polyprotein consisting of VP0, VP3, and VP1 was processed into the discrete capsid proteins. Western blot analysis of 3C confirmed the presence of discrete 3C protein, suggesting that the 2A sequence functioned as a "ribosomal skipping" signal in the yeast for an internal re-initiation of 3C translation from a monocistronic transcript, thereby indicating polyprotein processing by the discrete 3C protease. Moreover, a band corresponding to only VP2, which was known to be non-enzymatically processed from VP0 to both VP4 and VP2 during viral assembly, further validated the assembly of processed capsid proteins into VLPs. Electron microscopy showed the presence of the characteristic icosahedral VLPs. Our results clearly demonstrate that S. cerevisiae processes the viral structural polyprotein using a viral 3C protease and the resulting viral capsid subunits are assembled into virion particles. KEY POINTS: • Ribosomal skipping by self-cleaving FMDV peptide in S. cerevisiae. • Proteolytic processing of a structural polyprotein from a monocistronic transcript. • Assembly of the processed viral capsid proteins into a virus-like particle.


Subject(s)
Foot-and-Mouth Disease Virus , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/genetics , Foot-and-Mouth Disease Virus/genetics , Capsid Proteins/genetics , Endopeptidases , Peptide Hydrolases , Polyproteins/genetics , 3C Viral Proteases
5.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38240591

ABSTRACT

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Subject(s)
3C Viral Proteases , Enterovirus D, Human , Interferon Type I , Signal Transduction , Humans , 3C Viral Proteases/metabolism , Antigens, Viral/metabolism , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Enterovirus D, Human/physiology , Host-Pathogen Interactions , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Peptide Hydrolases/metabolism , Proteolysis , STAT1 Transcription Factor/metabolism , Viral Proteins/metabolism
6.
Autophagy ; 20(3): 614-628, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37930946

ABSTRACT

Seneca Valley virus (SVV) causes vesicular disease in pigs, posing a threat to global pork production. OPTN (optineurin) is a macroautophagy/autophagy receptor that restricts microbial propagation by targeting specific viral or bacterial proteins for degradation. OPTN is degraded and cleaved at glutamine 513 following SVV infection via the activity of viral 3C protease (3C[pro]), resulting in N-terminal and a C-terminal OPTN fragments. Moreover, OPTN interacts with VP1 and targets VP1 for degradation to inhibit viral replication. The N-terminal cleaved OPTN sustained its interaction with VP1, whereas the degradation capacity targeting VP1 decreased. The inhibitory effect of N-terminal OPTN against SVV infection was significantly reduced, C-terminal OPTN failed to inhibit viral replication, and degradation of VP1 was blocked. The knockdown of OPTN resulted in reduced TBK1 activation and phosphorylation of IRF3, whereas overexpression of OPTN led to increased TBK1-IRF3 signaling. Additionally, the N-terminal OPTN diminished the activation of the type I IFN (interferon) pathway. These results show that SVV 3C[pro] targets OPTN because its cleavage impairs its function in selective autophagy and type I IFN production, revealing a novel model in which the virus develops diverse strategies for evading host autophagic machinery and type I IFN response for survival.Abbreviations: Co-IP: co-immunoprecipitation; GFP-green fluorescent protein; hpi: hours post-infection; HRP: horseradish peroxidase; IFN: interferon; IFNB/IFN-ß: interferon beta; IRF3: interferon regulatory factor 3; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; OPTN: optineurin; PBS: phosphate-buffered saline; SVV: Seneca Valley virus; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; UBAN: ubiquitin binding in TNIP/ABIN (TNFAIP3/A20 and inhibitor of NFKB/NF-kB) and IKBKG/NEMO; UBD: ubiquitin-binding domain; ZnF: zinc finger.


Subject(s)
Interferon Type I , Macroautophagy , Picornaviridae , Animals , Swine , Peptide Hydrolases , Autophagy , Interferon-beta , Endopeptidases , NF-kappa B , 3C Viral Proteases , Ubiquitins
7.
J Virol ; 97(10): e0072723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819133

ABSTRACT

IMPORTANCE: Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.


Subject(s)
3C Viral Proteases , Interferon Type I , Picornaviridae , Animals , Host-Pathogen Interactions , Interferon Type I/metabolism , Karyopherins , Picornaviridae/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Swine , 3C Viral Proteases/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , alpha Karyopherins/metabolism , Signal Transduction
8.
Viruses ; 15(9)2023 09 06.
Article in English | MEDLINE | ID: mdl-37766293

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious disease in cloven-hoofed animals, caused by the foot-and-mouth disease virus (FMDV). It is endemic in Asia and Africa but spreads sporadically throughout the world, resulting in significant losses in the livestock industry. Effective anti-FMDV therapeutics could be a supportive control strategy. Herein, we utilized computer-aided, structure-based virtual screening to filter lead compounds from the National Cancer Institute (NCI) diversity and mechanical libraries using FMDV 3C protease (3Cpro) as the target. Seven hit compounds were further examined via cell-based antiviral and intracellular protease assays, in which two compounds (NSC116640 and NSC332670) strongly inhibited FMDV, with EC50 values at the micromolar level of 2.88 µM (SI = 73.15) and 5.92 µM (SI = 11.11), respectively. These compounds could inactivate extracellular virus directly in a virucidal assay by reducing 1.00 to 2.27 log TCID50 of the viral titers in 0-60 min. In addition, the time-of-addition assay revealed that NSC116640 inhibited FMDV at the early stage of infection (0-8 h), while NSC332670 diminished virus titers when added simultaneously at infection (0 h). Both compounds showed good FMDV 3Cpro inhibition with IC50 values of 10.85 µM (NSC116640) and 4.21 µM (NSC332670). The molecular docking of the compounds on FMDV 3Cpro showed their specific interactions with amino acids in the catalytic triad of FMDV 3Cpro. Both preferentially reacted with enzymes and proteases in physicochemical and ADME analysis studies. The results revealed two novel small molecules with antiviral activities against FMDV and probably related picornaviruses.


Subject(s)
Foot-and-Mouth Disease Virus , Peptide Hydrolases , Animals , Molecular Docking Simulation , Endopeptidases , Antiviral Agents/pharmacology , 3C Viral Proteases
9.
J Virol ; 97(8): e0060423, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37555661

ABSTRACT

Viruses have evolved diverse strategies to evade the host innate immune response and promote infection. The retinoic acid-inducible gene I (RIG-I)-like receptors RIG-I and MDA5 are antiviral factors that sense viral RNA and trigger downstream signal via mitochondrial antiviral-signaling protein (MAVS) to activate type I interferon expression. 14-3-3ε is a key component of the RIG-I translocon complex that interacts with MAVS at the mitochondrial membrane; however, the exact role of 14-3-3ε in this pathway is not well understood. In this study, we demonstrate that 14-3-3ε is a direct substrate of both the poliovirus and coxsackievirus B3 (CVB3) 3C proteases (3Cpro) and that it is cleaved at Q236↓G237, resulting in the generation of N- and C-terminal fragments of 27.0 and 2.1 kDa, respectively. While the exogenous expression of wild-type 14-3-3ε enhances IFNB mRNA production during poly(I:C) stimulation, expression of the truncated N-terminal fragment does not. The N-terminal 14-3-3ε fragment does not interact with RIG-I in co-immunoprecipitation assays, nor can it facilitate RIG-I translocation to the mitochondria. Probing the intrinsically disordered C-terminal region identifies key residues responsible for the interaction between 14-3-3ε and RIG-I. Finally, overexpression of the N-terminal fragment promotes CVB3 infection in mammalian cells. The strategic enterovirus 3Cpro-mediated cleavage of 14-3-3ε antagonizes RIG-I signaling by disrupting critical interactions within the RIG-I translocon complex, thus contributing to evasion of the host antiviral response. IMPORTANCE Host antiviral factors work to sense virus infection through various mechanisms, including a complex signaling pathway known as the retinoic acid-inducible gene I (RIG-I)-like receptor pathway. This pathway drives the production of antiviral molecules known as interferons, which are necessary to establish an antiviral state in the cellular environment. Key to this antiviral signaling pathway is the small chaperone protein 14-3-3ε, which facilitates the delivery of a viral sensor protein, RIG-I, to the mitochondria. In this study, we show that the enteroviral 3C protease cleaves 14-3-3ε during infection, rendering it incapable of facilitating this antiviral response. We also find that the resulting N-terminal cleavage fragment dampens RIG-I signaling and promotes virus infection. Our findings reveal a novel viral strategy that restricts the antiviral host response and provides insights into the mechanisms underlying 14-3-3ε function in RIG-I antiviral signaling.


Subject(s)
Picornaviridae Infections , Picornaviridae , Animals , Cysteine Endopeptidases/metabolism , DEAD Box Protein 58/metabolism , Immunity, Innate , Mammals , Peptide Hydrolases/metabolism , Picornaviridae/metabolism , Signal Transduction , Tretinoin , Viral Proteins/metabolism , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , 3C Viral Proteases
10.
PLoS Pathog ; 19(5): e1011411, 2023 May.
Article in English | MEDLINE | ID: mdl-37253057

ABSTRACT

Seneca virus A (SVA) is an emerging novel picornavirus that has recently been identified as the causative agent of many cases of porcine vesicular diseases in multiple countries. In addition to cleavage of viral polyprotein, the viral 3C protease (3Cpro) plays an important role in the regulation of several physiological processes involved in cellular antiviral responses by cleaving critical cellular proteins. Through a combination of crystallography, untargeted lipidomics, and immunoblotting, we identified the association of SVA 3Cpro with an endogenous phospholipid molecule, which binds to a unique region neighboring the proteolytic site of SVA 3Cpro. Our lipid-binding assays showed that SVA 3Cpro displayed preferred binding to cardiolipin (CL), followed by phosphoinositol-4-phosphate (PI4P) and sulfatide. Importantly, we found that the proteolytic activity of SVA 3Cpro was activated in the presence of the phospholipid, and the enzymatic activity is inhibited when the phospholipid-binding capacity decreased. Interestingly, in the wild-type SVA 3Cpro-substrate peptide structure, the cleavage residue cannot form a covalent binding to the catalytic cysteine residue to form the acyl-enzyme intermediate observed in several picornaviral 3Cpro structures. We observed a decrease in infectivity titers of SVA mutants harboring mutations that impaired the lipid-binding ability of 3Cpro, indicating a positive regulation of SVA infection capacity mediated by phospholipids. Our findings reveal a mutual regulation between the proteolytic activity and phospholipid-binding capacity in SVA 3Cpro, suggesting that endogenous phospholipid may function as an allosteric activator that regulate the enzyme's proteolytic activity during infection.


Subject(s)
Cysteine Endopeptidases , Picornaviridae , Animals , Swine , Cysteine Endopeptidases/metabolism , 3C Viral Proteases/metabolism , Peptide Hydrolases/metabolism , Allosteric Regulation , Phospholipids , Viral Proteins/metabolism
11.
J Virol ; 97(4): e0042523, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37039659

ABSTRACT

Enterovirus D68 (EV-D68), which causes severe respiratory diseases and irreversible central nervous system damage, has become a serious public health problem worldwide. However, the mechanisms by which EV-D68 exerts neurotoxicity remain unclear. Thus, we aimed to analyze the effects of EV-D68 infection on the cleavage, subcellular translocation, and pathogenic aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in respiratory or neural cells. The results showed that EV-D68-encoded proteases 2A and 3C induced TDP-43 translocation and cleavage, respectively. Specifically, 3C cleaved residue 327Q of TDP-43. The 3C-mediated cleaved TDP-43 fragments had substantially decreased protein solubility compared with the wild-type TDP-43. Hence, 3C activity promoted TDP-43 aggregation, which exerted cytotoxicity to diverse human cells, including glioblastoma T98G cells. The effects of commercially available antiviral drugs on 3C-mediated TDP-43 cleavage were screened, and the results revealed lopinavir as a potent inhibitor of EV-D68 3C protease. Overall, these results suggested TDP-43 as a conserved host target of EV-D68 3C. This study is the first to provide evidence on the involvement of TDP-43 dysregulation in EV-D68 pathogenesis. IMPORTANCE Over the past decade, the incidence of enterovirus D68 (EV-D68) infection has increased worldwide. EV-D68 infection can cause different respiratory symptoms and severe neurological complications, including acute flaccid myelitis. Thus, elucidating the mechanisms underlying EV-D68 toxicity is important to develop novel methods to prevent EV-D68 infection-associated diseases. This study shows that EV-D68 infection triggers the translocalization, cleavage, and aggregation of TDP-43, an intracellular protein closely related to degenerative neurological disorders. The viral protease 3C decreased TDP-43 solubility, thereby exerting cytotoxicity to host cells, including human glioblastoma cells. Thus, counteracting 3C activity is an effective strategy to relieve EV-D68-triggered cell death. Cytoplasmic aggregation of TDP-43 is a hallmark of degenerative diseases, contributing to neural cell damage and central nervous system (CNS) disorders. The findings of this study on EV-D68-induced TDP-43 formation extend our understanding of virus-mediated cytotoxicity and the potential risks of TDP-43 dysfunction-related cognitive impairment and neurological symptoms in infected patients.


Subject(s)
DNA-Binding Proteins , Enterovirus Infections , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/pharmacology , Enterovirus D, Human , Enterovirus Infections/physiopathology , Enterovirus Infections/virology , Cell Line, Tumor , 3C Viral Proteases/metabolism , Protein Aggregation, Pathological/genetics , Lopinavir/pharmacology , Proteolysis/drug effects , Gene Silencing , Protease Inhibitors/pharmacology
12.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982419

ABSTRACT

Sobemoviruses encode serine-like 3C proteases (Pro) that participate in the processing and maturation of other virus-encoded proteins. Its cis and trans activity is mediated by the naturally unfolded virus-genome-linked protein (VPg). Nuclear magnetic resonance studies show a Pro-VPg complex interaction and VPg tertiary structure; however, information regarding structural changes of the Pro-VPg complex during interaction is lacking. Here, we solved a full Pro-VPg 3D structure of ryegrass mottle virus (RGMoV) that demonstrates the structural changes in three different conformations due to VPg interaction with Pro. We identified a unique site of VPg interaction with Pro that was not observed in other sobemoviruses, and observed different conformations of the Pro ß2 barrel. This is the first report of a full plant Pro crystal structure with its VPg cofactor. We also confirmed the existence of an unusual previously unmapped cleavage site for sobemovirus Pro in the transmembrane domain: E/A. We demonstrated that RGMoV Pro in cis activity is not regulated by VPg and that in trans, VPg can also mediate Pro in free form. Additionally, we observed Ca2+ and Zn2+ inhibitory effects on the Pro cleavage activity.


Subject(s)
Lolium , RNA Viruses , Proteolysis , Peptide Hydrolases/metabolism , Lolium/metabolism , Serine/metabolism , Amino Acid Sequence , Viral Proteins/metabolism , Endopeptidases/metabolism , RNA Viruses/metabolism , 3C Viral Proteases
13.
Chem Biodivers ; 20(3): e202201100, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36808685

ABSTRACT

The 3C protease (3C Pro) plays a significant role in the life cycle of picornaviruses from replication to translation, making it an attractive target for structure-based design of drugs against picornaviruses. The structurally related 3C-like protease (3CL Pro) is an important protein involved in the replication of coronaviruses. With the emergence of COVID-19 and consequent intensive research into 3CL Pro, development of 3CL Pro inhibitors has emerged as a popular topic. This article compares the similarities of the target pockets of various 3C and 3CL Pros from numerous pathogenic viruses. This article also reports several types of 3C Pro inhibitors that are currently undergoing extensive studies and introduces various structural modifications of 3C Pro inhibitors to provide a reference for the development of new and more effective inhibitors of 3C Pro and 3CL Pro.


Subject(s)
COVID-19 , Picornaviridae , Humans , 3C Viral Proteases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Peptide Hydrolases , Antiviral Agents/pharmacology
14.
J Immunol ; 210(3): 335-347, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36525065

ABSTRACT

Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.


Subject(s)
Interferon-Induced Helicase, IFIH1 , RNA, Double-Stranded , Theilovirus , Animals , Mice , Cysteine Endopeptidases/genetics , Host-Pathogen Interactions , Immunity, Innate , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Peptide Hydrolases/metabolism , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , 3C Viral Proteases
15.
J Virol ; 96(19): e0133222, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36106874

ABSTRACT

Mammalian TRIM7 is an antiviral protein that inhibits multiple human enteroviruses by degrading the viral 2BC protein. Whether TRIM7 is reciprocally targeted by enteroviruses is not known. Here, we report that the 3C protease (3Cpro) from two enteroviruses, coxsackievirus B3 (CVB3) and poliovirus, targets TRIM7 for cleavage. CVB3 3Cpro cleaves TRIM7 at glutamine 24 (Q24), resulting in a truncated TRIM7 that fails to inhibit CVB3 due to dampened E3 ubiquitin ligase activity. TRIM7 Q24 is highly conserved across mammals, except in marsupials, which instead have a naturally occurring histidine (H24) that is not subject to 3Cpro cleavage. Marsupials also express two isoforms of TRIM7, and the two proteins from koalas have distinct antiviral activities. The longer isoform contains an additional exon due to alternate splice site usage. This additional exon contains a unique 3Cpro cleavage site, suggesting that certain enteroviruses may have evolved to target marsupial TRIM7 even if the canonical Q24 is missing. Combined with computational analyses indicating that TRIM7 is rapidly evolving, our data raise the possibility that TRIM7 may be targeted by enterovirus evasion strategies and that evolution of TRIM7 across mammals may have conferred unique antiviral properties. IMPORTANCE Enteroviruses are significant human pathogens that cause viral myocarditis, pancreatitis, and meningitis. Knowing how the host controls these viruses and how the viruses may evade host restriction is important for understanding fundamental concepts in antiviral immunity and for informing potential therapeutic interventions. In this study, we demonstrate that coxsackievirus B3 uses its virally encoded protease to target the host antiviral protein TRIM7 for cleavage, suggesting a potential mechanism of viral immune evasion. We additionally show that TRIM7 has evolved in certain mammalian lineages to express protein variants with distinct antiviral activities and susceptibilities to viral protease-mediated cleavage.


Subject(s)
3C Viral Proteases , Enterovirus Infections , Enterovirus , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , 3C Viral Proteases/metabolism , Animals , Enterovirus/enzymology , Glutamine , Histidine , Host-Pathogen Interactions , Phascolarctidae/virology , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
J Virol ; 96(17): e0061222, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36005757

ABSTRACT

Protein SUMOylation represents an important cellular process that regulates the activities of numerous host proteins as well as of many invasive viral proteins. Foot-and-mouth disease virus (FMDV) is the first animal virus discovered. However, whether SUMOylation takes place during FMDV infection and what role it plays in FMDV pathogenesis have not been investigated. In the present study, we demonstrated that SUMOylation suppressed FMDV replication by small interfering RNA (siRNA) transfection coupled with pharmaceutical inhibition of SUMOylation, which was further confirmed by increased virus replication for SUMOylation-deficient FMDV with mutations in 3C protease, a target of SUMOylation. Moreover, we provided evidence that four lysine residues, Lys-51, -54, -110, and -159, worked together to confer the SUMOylation to the FMDV 3C protease, which may make SUMOylation of FMDV 3C more stable and improve the host's chance of suppressing the replication of FMDV. This is the first report that four lysine residues can be alternatively modified by SUMOylation. Finally, we showed that SUMOylation attenuated the cleavage ability, the inhibitory effect of the interferon signaling pathway, and the protein stability of FMDV 3C, which appeared to correlate with a decrease in FMDV replication. Taken together, the results of our experiments describe a novel cellular regulatory event that significantly restricts FMDV replication through the SUMOylation of 3C protease. IMPORTANCE FMD is a highly contagious and economically important disease in cloven-hoofed animals. SUMOylation, the covalent linkage of a small ubiquitin-like protein to a variety of substrate proteins, has emerged as an important posttranslational modification that plays multiple roles in diverse biological processes. In this study, four lysine residues of FMDV 3C were found to be alternatively modified by SUMOylation. In addition, we demonstrated that SUMOylation attenuated FMDV 3C function through multiple mechanisms, including cleavage ability, the inhibitory effect of the interferon signaling pathway, and protein stability, which, in turn, resulted in a decrease of FMDV replication. Our findings indicate that SUMOylation of FMDV 3C serves as a host cell defense against FMDV replication. Further understanding of the cellular and molecular mechanisms driving this process should offer novel insights to design an effective strategy to control the dissemination of FMDV in animals.


Subject(s)
Cysteine Endopeptidases/metabolism , Foot-and-Mouth Disease Virus , 3C Viral Proteases , Animals , Antiviral Agents , Foot-and-Mouth Disease , Foot-and-Mouth Disease Virus/genetics , Host-Pathogen Interactions , Lysine/metabolism , Peptide Hydrolases/metabolism , Sumoylation , Virus Replication
17.
J Virol ; 96(17): e0112122, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000840

ABSTRACT

Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.


Subject(s)
3C Viral Proteases , Picornaviridae , Proteolysis , RNA Helicases , 3C Viral Proteases/metabolism , Animals , Chromatography, Liquid , Immunoprecipitation , Picornaviridae/enzymology , Picornaviridae/genetics , Picornaviridae/growth & development , Picornaviridae/physiology , Protein Binding , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Double-Stranded/biosynthesis , RNA, Viral/biosynthesis , Swine/virology , Swine Vesicular Disease/virology , Tandem Mass Spectrometry , Virus Replication
18.
Viruses ; 14(8)2022 07 23.
Article in English | MEDLINE | ID: mdl-35893676

ABSTRACT

TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.


Subject(s)
Caliciviridae Infections , Glutamine , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , 3C Viral Proteases , Enterovirus , Humans , Norovirus , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/genetics
19.
Biosci Rep ; 42(6)2022 06 30.
Article in English | MEDLINE | ID: mdl-35642592

ABSTRACT

Baculovirus expression vector system (BEVS) has been recognized as a potent protein expression system in engineering valuable enzymes and vaccines. Various fusion tags facilitate protein purification, leaving the potential risk to influence the target protein's biological activity negatively. It is of great interest to consider removing the additional tags using site-specific proteases, such as human rhinoviruses (HRV) 3C protease. The current study validated the cleavage activity of 3C protease in Escherichia coli and silkworm-BEVS systems by mixing the cell or fat body lysates of 3C protein and 3C site containing target protein in vitro. Further verification has been performed in the fat body lysate from co-expression of both constructs, showing remarkable cleavage efficiency in vivo silkworm larvae. We also achieved the glutathione-S-transferase (GST) tag-cleaved product of the VP15 protein from the White spot syndrome virus after purification, suggesting that we successfully established a coinfection-based recognition-and-reaction BEVS platform for the tag-free protein engineering.


Subject(s)
Bombyx , 3C Viral Proteases , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Bombyx/genetics , Bombyx/metabolism , Cysteine Endopeptidases/metabolism , Digestion , Escherichia coli/genetics , Escherichia coli/metabolism , Heart Rate , Humans , Viral Proteins/metabolism
20.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682728

ABSTRACT

Hepatitis A virus (HAV) infection is a major cause of acute hepatitis worldwide and occasionally causes acute liver failure and can lead to death in the absence of liver transplantation. Although HAV vaccination is available, the prevalence of HAV vaccination is not adequate in some countries. Additionally, the improvements in public health reduced our immunity to HAV infection. These situations motivated us to develop potentially new anti-HAV therapeutic options. We carried out the in silico screening of anti-HAV compounds targeting the 3C protease enzyme using the Schrodinger Modeling software from the antiviral library of 25,000 compounds to evaluate anti-HAV 3C protease inhibitors. Additionally, in vitro studies were introduced to examine the inhibitory effects of HAV subgenomic replicon replication and HAV HA11-1299 genotype IIIA replication in hepatoma cell lines using luciferase assays and real-time RT-PCR. In silico studies enabled us to identify five lead candidates with optimal binding interactions in the active site of the target HAV 3C protease using the Schrodinger Glide program. In vitro studies substantiated our hypothesis from in silico findings. One of our lead compounds, Z10325150, showed 47% inhibitory effects on HAV genotype IB subgenomic replicon replication and 36% inhibitory effects on HAV genotype IIIA HA11-1299 replication in human hepatoma cell lines, with no cytotoxic effects at concentrations of 100 µg/mL. The effects of the combination therapy of Z10325150 and RNA-dependent RNA polymerase inhibitor, favipiravir on HAV genotype IB HM175 subgenomic replicon replication and HAV genotype IIIA HA11-1299 replication showed 64% and 48% inhibitory effects of HAV subgenomic replicon and HAV replication, respectively. We identified the HAV 3C protease inhibitor Z10325150 through in silico screening and confirmed the HAV replication inhibitory activity in human hepatocytes. Z10325150 may offer the potential for a useful HAV inhibitor in severe hepatitis A.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis A virus , Hepatitis A , Liver Neoplasms , 3C Viral Proteases , Carcinoma, Hepatocellular/drug therapy , Hepatitis A/drug therapy , Hepatitis A Antibodies , Hepatitis A virus/genetics , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...